CHROMATOGRAPHIC BEHAVIOUR AND CHEMICAL STRUCTURE

I. THIN-LAYER CHROMATOGRAPHY OF ALIPHATIC ACIDS

F. GUTLBAUER

Institute of Chemistyy, Reactor Centre Saibersdorf, Lenaugasse ro, A-ro8o Wien (Austria)
(First received June 17 th, 1969 ; revised manuscript received August 9th, 1969)

SUMMARY

About sixty aliphatic acids, predominantly fatty acids, hydroxy acids, amino acids and halogen acids, were separated on cellulose layers with the solvent mixture n-butanol-diethylamine-water ($85: 1: 14$). The R_{M} values so obtained illustrate in most cases the validity of Martin's theoretical postulates for the relationship.between chemical structure and R_{F} value in partition chromatography. Thus when R_{M} is plotted against the number of substituent groups of any one kind a close approximation to linearity results, except in the case of acids with vicinal hydrophilic groups. The calculation of group constants and binding increments was done by direct comparison of the R_{M} values of substances differing by only one group or increment. These data facilitate the chromatographic elucidation of structural problems; only very small amounts of the substances which do not even need to be isolated in pure form are required.

INTRODUCTION

In the course of our investigations of radiation induced carboxylation of organic acids with ${ }^{14} \mathrm{C}$ labelled CO_{2} an analytical procedure was required to separate the organic acids formed by this process. The method was also required to indicate how many COOF-groups were introduced into the model substrate and in what position relative to other functional groups, they were located. A chromatographic procedure appeared to be especially suited, since there were already a number of papers on the relationship between molecular structure and chromatographic behaviour ${ }^{1-18}$.

Based on predictions of Consden et al. ${ }^{10}$ and MARTin ${ }^{20}$, a linear relationship between the \boldsymbol{R}_{M} value and the number of identical groups has been proved experimentally by many authors ${ }^{1-18,21-20}$:

$$
\begin{align*}
& R_{M}=G_{0}+n G_{\mathbf{x}}+m G_{\mathrm{Y}}+ \text { group constant of } \mathbf{X}, \mathbf{Y}, \cdots \ldots \\
& \mathbf{G}_{\mathrm{x}} \mathbf{G}_{\mathbf{y}} \cdots \cdots \\
& \mathbf{G}_{0}=\text { basic constant. }
\end{align*}
$$

Some of these group constants are known in the case of paper chromatography (PC) 1,4-6,23, but for TLC which is better suited for the separation of organic acids ${ }^{28,30,21}$,

[^0]only a few constants have been publishedio,13. Furthermore, in TLC the contribution of one group to the R_{M} value of the molecule is dependent on the other groups in the molecule, as was shown by Paraki ${ }^{13}$ who compared the \boldsymbol{R}_{M} values of amino acids differing by specific groups.

It is the aim of this and a following paper ${ }^{32}$ to establish the group constants from the R_{F} values of more than a hundred organic acids. In addition, the effect of criteria so far hardly considered, for instance binding increments, such as double bonds, chain branching, ring closure and the relative positions of functional groups are taken into account. These data can facilitate the elucidation of structural problems.

EXPERIMENTAL
The separation of the acids was carried out on cellulose layers for two reasons, First, the best results for the chromatography of acids were obtained on cellulose layers ${ }^{83-95}$. Secondly, cellulose layers correspond well with PC in their chromatographic behaviour, thus facilitating the transferability of PC experience to TLC36. Cellulose layers, however, have the advantages of giving better separations, and having shorter development times and greater sensitivity than PC.

Preparation of the plates

Fifteen grams cellulose powder HR 300 (Macherey, Nagel) were stirred vigorously with 75 ml water. Adsorbent layers of 0.25 mm thickness were prepared on $20 \times 20 \mathrm{~cm}$ glass plates with Desaga equipment, (Heidelberg). The plates were airdried horizontally, at room temperature overnight. Almost all the acids were spotted as their diethylamine salts, dissolved in methanol, along a line 2.5 cm from the lower end of the plate. Approximately ro $\mu \mathrm{g}$ of test substance (μ l of $\mathrm{r} \%$ solution) were used for each spot. The plates were then equilibrated for 4 h at constant temperature $\left(23^{\circ} \pm x^{\circ}\right)$ and developed by the ascending technique in a tank lined with solventsoaked filter paper.

Solvent system

System: n-butanol-diethylamine-water ($85: 1: 14$). The duration of development is 85 min . After that time the front is at a distance of 10 cm from the starting line. After development the solvent is allowed to evaporate at 60°, which is below the decomposition temperature of the diethylamine salts.

The use of diethylamine as the volatile alkali instead of the otherwise more common ammonia was first proposed by Jones et al. ${ }^{37}$ for the PC of some volatile organic acids. It prevents the partial separation of the eluting system possible under certain conditions, since diethylamine dissolves well in both phases. Furthermore it facilitates the identification of the acids as diethylamine salts after spraying with ninhydrin reagent.

Detection reagent

Various reagents were tried, e.g., pH-indicators such as bromocresol purple or bromocresol green, sodium nitroprusside and ninhydrin reagent. The best results, however, for minute amounts of even very weak acids were obtained with ninhydrin. After spraying with ninhydrin the plates were warmed for 30 min at 60°. Ninhydrin
reveals the acids as blue violet spots on a white or pale rose background. The diethylamine salts appear as more durable and more clearly defined spots than the ammonium salts. The detection limit is about $0.5 \mu \mathrm{~g}$ acid.

To correlate the chromatographic behaviour of substances with their chemical structure an accurate knowledge of the R_{F} values is necessary. Recently, new techniques for the exact determination of R_{F} values have therefore been proposed, such as tankless or flatbed chromatography in the case of PC^{11}. We worked with conventional equipment, but strictly observed the following points to achieve reproducible and accurate results: constant temperature, time of saturation and size of spots. A control substance, in most cases glycolic acid, was always run alongside and if its R_{F} value differed by more than 0.02 from the standard value, the run was discarded.

RESULTS AND DISCUSSION

Monocarboxylic acids

The separation of organic acids by chromatography has been reported in a number of publications. Some of them make use of PC, e.g., the work by LoNG et al. ${ }^{22}$, Howe ${ }^{27}$ and Hartley ${ }^{38}$, other authors however prefer TLC. The separation of straight chain carboxylic acids by TLC was carried out by Hromatka and Aue ${ }^{28}$ as well as by Lynes ${ }^{39}$ and Braun and Vorendohre ${ }^{40}$, who obtained good results. Branched carboxylic acids however have been investigated less.

TABLEI
UNSUBSTITUTED MONOCARBOXYLIC ACIDS

No.	Acid	$\begin{aligned} & R_{F} \\ & \text { exp. } \end{aligned}$	R_{M}		R_{F} calc.	$\triangle R_{M}$	ΔR_{F}
1	Formic	0.41	0.16	0.30	0.33	O. 14	0.08
2	Acetic	0.45	0.09	0.08	0.45	0.01	0.00
3	Propionic	0.58	-0.14	-0.14	0.58	0.00	0.00
4	Butyric	0.69	-0.35	-0.36	0.70	0.01	0.01
5	Valeric	0.79	-0.58	-0.58	0.79	0.00	0.00
6	Caproic	0.86	-0.79	-0.80	0.86	0.01	0.00
7	Enanthic	0.92	- 1.06	-1.02	0.91	0.04	0.01
8	Caprylic	0.95	- 1.28	-1.24	0.95	0.04	0.00
9	2-Methylpropionic	0.71	-0.39	-0.39	0.71	0.00	0.00
10	2-Methylbutyric	0.80	-0.60	-0.61	0.80	0.01	0.00
II	2,2-Dimethylpropionic	0.81	-0.63	-0.64	0.81	0.01	0.00
12	2,2-Dimethylbutyric	0.88	-0.87	-0.86	0.88	0.01	0.00
13	2-Ethylbutyric	0.87	-0.83	-0.83	0.87	0.00	0.00
14	2-Methyl-2-ethylbutyric	0.92	- 1.06	-1.08	0.92	0.02	0.00
15	2,2-Dimethylvaleric	0.92	- 1.06	-1.08	0.92	0.02	0.00
16	2-Ethylpropionic	0.95	-r.28	-1.27	0.95	0.01	0.00
17	3,3-Dimethylbutyric	0.78	-0.55	-0.52	0.77	0.03	0.or
18	4-Methylvaleric.	0.82	-0.66	-0.66	0.82	0.00	0.00
19	2,2,4,4-Tetramethylcaproic	0.97	- I. 51	-1.46	0.96	0.05	0.01
20	Acrylic	0.53	-0.05	-0.05	0.53	0.00	0.00
21	Crotonic	0.64	-0.25	-0.27	0.65	0.02	0.01

J. Chromatog., 45 (1969) 104-1 12

The experimental R_{F} and R_{M} values of straight chain and branched monocarboxylic acids, as well as the R_{M} and R_{F} values calculated by means of the established group constants, are given in Table I (Nos. I-19). The differences, i.e. ΔR_{M} and ΔR_{1}, are presented in the last two columns. It can be seen that only formic acid shows a discrepancy between the experimental and calculated R_{M} value. This can be explained by the fact; that the calculated R_{M} value of formic acid is obtained by the sum of the basic constant and the R_{M} constant of the carboxylic group. Thus the hydrogen atom of formic acid is not accounted for.

The method described does not give a satisfactory separation of formic and acetic acid. This is in agreement with BAYZER ${ }^{41}$ who found that for the complete separation of the alkali derivatives of $\mathrm{C}_{1}-\mathrm{C}_{5}$ carboxylic acids a combination of TLC and electrophoresis is necessary. The separation of the hydroxamates however can be achieved by TLC alone.

When the R_{M} values of the fatty acids are plotted against their carbon number a close approximation to linearity is obtained. The difference of the R_{M} values between these homologues gives the constant for the CH_{2}-group, $G_{\left(\mathrm{CH}_{2}\right)}=-0.23$. Based on the data of other homologous compounds, especially hydroxy acids and dicarboxylic acids ${ }^{32}$, the R_{M} constant of the CH_{2}-group as well as of any other aliphatic C-atom was established as -0.22 (Table VI). For an example might be mentioned:

$$
\begin{equation*}
G_{\left(\mathrm{CH}_{2}\right)}=R_{M \text { leuctne }}-R_{M \text { valine }}=-0.22 \tag{2}
\end{equation*}
$$

The calculation of other group constants was carried out in the same manner, by using the difference between the R_{M} values of two compounds, differing only by the group in question.

The R_{M} constants for chain branching were determined by way of the R_{F} values of branched fatty acids (Nos. 9-19) and branched amino acids. For a branching in the α-position the value is -0.03 , for any other branching it is +0.12 (Table VI). The data available were not sufficient to establish these values very accurately or to distinguish between chain branching in the β - and γ-position. One can assume that these positions would also show rather different values for chain branching, an assumption which is supported by the special value of the α-position. A comparison
rAbLEII
HYDROXY ACIDS

No	Acid	$\begin{aligned} & R_{p} \\ & c x p . \end{aligned}$	R_{M}		R_{r}, calc.	ΔR_{M}	ΔR_{F}
			measur	calc.			
22	Glycolic	0.25	0.48	0.57	0.2 I	0.09	0.04
23	Lactic	0.31	0.35	0.35	0.31	0.00	0.00
24	3-Hyclroxypropionic	0.27	0.43	0.42	0.27	O.Or	0.00
25	2-Hydroxybutyric	0.42	O. 14	0.14	0.42	0.00	0.00
26	3-Hydroxybutyric	0.33	0.21	0.20	0.39	0.01	O.OI
27	4-Hyclroxybutyric	0.28	0.41	0.40	0.28	O.OI	0.00
28	2-Hydroxyvaleric	0.55	-0.09	-0.09	0.55	0.00	0.00
29	2-Hydroxycaproic	0.66	-0.29	-0.31	0.67	0.02	0.01
	a-Hydroxyhexanoic	0.77	-0.52	-0.53	0.77	0.01	0.00
31	Glyceric	0. 12	0.87	0.91	O. 11	0.04	0.01

between the R_{M} values of acrylic and crotonic acid and the corresponding saturated compounds leads to a mean value of +0.09 for the R_{M} constant of the double bond.

Hydroxy acids

The R_{F} and R_{M} values of ro hydroxy acids (Nos. 22-3I), predominantly α hydroxy acids are reported in Table II. With the exception of the first member of the series, glycolic acid, and glyceric acid, there is a good agreement between the experimental and calculated R_{F} values. Exceptions from the rule of additivity have already been noted before in the case of vicinal groups, as in glycolic and glyceric acid.

Although Reichi ${ }^{4}$, from the very limited data available to him, differentiated between primary and secondary hydroxy groups, it appears to be much more important to take into account the position of the hydroxy group, if one regards the data given in this paper.

In calculating the R_{M} value of the α-hydroxy group, glycolic acid was not accounted for due to its vicinal groups. The differences between R_{M} values of the other α-hydroxy acids and the corresponding unsubstituted carboxylic acids lead to a $G_{(\alpha-\mathrm{OH})}$ of +0.49 . 3-Hydroxy propionic acid and 3 -hydroxy butyric acid were used to calculate the constant for the $\beta-\mathrm{OH}$ group:

$$
\begin{align*}
& G_{(\beta \text {-OH })}=R_{M}{ }_{3} \text {-hydroxy proplontc }-R_{M} \text { propiontc }=0.57 \tag{3}\\
& G_{(\beta-\mathrm{OH})}=R_{M_{3} \text {-hydroxy butyric }-R_{M} \text { butyric }=0.56} \tag{4}
\end{align*}
$$

According to the above equations it does not appear to matter whether the $\beta-\mathrm{OH}$ groups are primary or secondary. Owing to the lower β-OH value of the amino acid pair threonine/2-aminobutyric acid, the $G_{(\beta-\mathrm{OH})}$ was defined as 0.56 . Using 4 -hydroxy butyric acid according to the method described above, $G_{(\gamma-\mathrm{OH})}$ was found to be +0.76 .

Amino acids

A thorough study of the relationship between molecular structure and the R_{M} values of the amino acids has been carried out by Schauer and Bulirsch ${ }^{5}$, Pataki ${ }^{13}$ and Trzaska and Kowkabany ${ }^{20}$. The latter authors also used butanol in

TABLE III

AMINO ACIDS

$N o$.	Acid	$\begin{aligned} & R_{F} \\ & e x p \end{aligned}$	R_{M}		R_{F} calc.	ΔR_{M}	ΔR_{F}
			meas	calc.			
32	Glycine	0.07	1.12	1.06	0.08	0.06	0.01
33	Alanine	0.13	0.83	0.84	0.13	0.01	0.00
34	2-Aminobutyric	0.19	0.62	0.62	0.19	0.00	0.00
35	3-Aminobutyric	0.17	0.69	0.68	0.17	0.01	0.00
36	4-Aminobutyric	0.14	0.79	0.78	0.14	0.01	0.00
37	2-Aminoisobutyric	0.21	0.58	0.59	0.20	0.01	0.01
38	Norvaline	0.27	0.43	0.40	0.28	0.03	0.01
39	Valine	0.22	0.55	0.54	0.22	0.01	0.00
40	Leucine	0.32	0.33	0.32	0.32	0.01	0.00
41	Isoleucine	0.31	0.35	0.32	0.32	0.03	0.01
42	6-Aminocaproic	-. 14	0.79	0.78	0.14	0.01	0.00

J. Chromatog., 45 (1969) 104-112
their solvent system but in an acid solution, n-butanol-acetic acid-water ($4: 1: 5$), and obtained a similar mean value for $G_{\left(\mathrm{CH}_{2}\right)}$ of -0.20 . Due to the small number of compounds investigated, they did not calculate any other group constants.

Table III shows the R_{F} and R_{M} values of II amino acids (Nos. 32-42). The values of phenylalanine and tyrosine are listedin the second part of this work ${ }^{32}$ under aromatic acids in order to make it possible to calculate the R_{M} constant of the phenyl group. In this other paper the data of other amino acids run in methanol solutions can also be found.

Comparison of experimental and calculated R_{M} values shows that a high discrepancy is only observed with glycine due to its vicinal groups. The calculation of the NH_{2}-group constants was done in the same way as for hydroxy compounds. Here too, emphasis was put on the relative positions of the amino and carboxyl groups (Table VI). The high positive value of $G_{\left(\varepsilon-\mathrm{NH}_{2}\right)}$ which was obtained according to the following equation is notable:

$$
\begin{equation*}
G_{\left(\varepsilon-\mathrm{NH}_{2}\right)}=R_{M \text { ©-amino caproic }}-R_{M \text { caprole }}=+\mathrm{I} .58 \tag{5}
\end{equation*}
$$

A similar relation between the group constants for the NH_{2}-group was observed by Schauer and Bulirsch ${ }^{5}$. They too, found $G_{\left(\alpha-\mathrm{NH}_{2}\right)}$ and $G_{\left(\beta-\mathrm{NH}_{2}\right)}$ to be close together, whereas the group constants of the remaining positions showed distinct differences.

Halogen acids

The halogen acids (Nos. 43-53) display a rather complex behaviour. Chloro-, bromo- and iodoacetic acid for instance have almost identical R_{F} values. The R_{F}.

TABLEIV
HALOGEN ACIDS

$N o$.	Acid	$\begin{aligned} & R_{F} \\ & \text { exp. } \end{aligned}$	R_{M}		R_{F} calc.	ΔR_{M}	ΔR_{r}
			measur	calc.			
43	Difluoroacetic	0.67	-0.31	-0.28	0.66	0.03	0.01
44	Trifluoroacetic	0.78	-0.55	-0.50	0.76	0.05	0.02
45	Chloroacetic	0.52	-0.04	-0.06	0.53	0.02	0.01
46	2-Chloropropionic	0.64	-0.25	-0.28	0.65	0.03	0.01
47	2-Chlorobutyric	0.75	-0.48	-0.50	0.76	0.02	0.01
48	Dichloroacetic	0.64	-0.25	-0.28	0.66	0.03	0.02
49	Trichloroacetic	0.74	-0.45	-0.50	0.76	0.05	0.02
50	Trichlorolactic	0.69	-0.35	-0.31	0.67	0.04	0.02
51	Bromoacetic	0.54	-0.07	-0.06	0.56	0.01	0.01
52	Tribrornoacetic	0.75	-0.48	-0.50	0.73	0.02	O.OI
53	Iodoacetic	0.54	-0.07	-0.06	0.53	0.01	0.01

values obtained experimentally lead to the conclusion, that the number of halogen atoms rather than kind and position of the halogens are of more importance for the R_{F} value. Therefore an attempt was made to obtain good agreement between measured and calculated R_{F}, values with a small number of group constants and to keep the calculation of the theoretical R_{F}, values of halogen acids as simple as possible. As a first approximation it appears to be sufficient to introduce, apart from the group
constant of the first halogen atom in α-position ($G=-0.14$), only one more constant for any further halogen atom independent of its position with respect to any other functional group in the compound ($G=-0.22$). This simplified approach only causes greater deviations in the case of the trisubstituted acids, whereas good agreement is obtained with the other compounds.

Other acids

R_{F} and R_{M} values of six organic acids (Nos. 54-59) with different functional groups were also investigated (Table V). The first three contained a carbonyl group. The successful TLC separation of ketocarboxylic acids on cellulose layers has already been described: Rink and Herrmann ${ }^{42}$ separated the acids as rhodamine derivates, and Chiari and Röhr ${ }^{43}$ separated the 2,4-DPHs of α-ketocarboxylic acids.

TABLE V

other acids

	Acid	$R_{e x p}$	R_{M}		R_{F} calc.	ΔR_{M}	ΔR^{\prime}
			measured	calc.			
54	Glyoxylic	0.30	0.37	0.37	0.30	0.00	0.00
55	Pyruvic	0.49	0.02	0.01	0.49	0.01	0.00
56	Levulinic	0.57	-0.12	-0.13	0.57	0.01	0.00
57	Ethoxyacetic	0.55	-0.08	-0.09	0.55	0.01	0.00
58	Thioglycolic	0.52	-0.04	-0.05	0.53	0.01	0.01
59	Butane-I-sulfonic	0.64	-0.25	-0.25	0.64	0.00	0.00

The calculation of the group constant for α-CHO could not be done by direct comparison of the R_{M} values of formic acid and glyoxylic acid, since, as already mentioned, the R_{M} value measured for formic acid differs greatly from the theoretical. Therefore $G_{(\alpha-\mathrm{CHO})}$ was directly determined from glyoxylic acid:

$$
\begin{equation*}
G_{(\alpha-\mathrm{CHO})}=R_{M \text { glyoxylic }}-G_{(\mathrm{COOH})}-G_{\mathrm{o}}=+0.07 \tag{6}
\end{equation*}
$$

The difference between the R_{F} values of pyruvic and acetic acid leads to a $G_{(\alpha-\mathrm{co})}$ of -0.07, that between levulinic and butyric acid to a $G_{(\gamma-\mathrm{co})}$ of +0.23 . Here too, one can observe, that the hydrophilic properties of a group are greatly weakened, when in the α-position.

The group constant for the ether group was obtained by subtracting the R_{M} value of butyric acid from the R_{M} of ethoxyacetic acid ($G_{\text {ether }}=+0.27$).

Thioglycolic acid, when compared with acetic acid, yields a $G_{(\alpha-\mathrm{sH})}$ of -o.13; and butane-I-sulfonic acid a value for $G_{\left(\mathrm{SO}_{3} \mathrm{HI}\right)}=+\mathrm{I} .59$.

Calculation of the basic constant

For the calculation of group constants and binding increments by direct comparison of the R_{M} values of substances differing by only one group or binding increment, the knowledge of the value for the basic constant is not necessary. For its determination, straight chain fatty acids, hydroxy acids and other simple acids were

TABLE VI

BASIC CONSTANT, GROUP CONSTANTS AND BINDING INCREMENTS
Adsorbent: Cellulose HR 300 (Macherey, Nagel). Solvent: n-Butanol-diethylaminc-water ($\mathbf{8}_{4}$: I : 14). Temperature: $23^{\circ} \pm 1^{\circ}$.

Basic constant	-0.96
Aliphatic C-atom	0.22
Chain branching, in α-position	-0.03
in other positions	+0.14
$\mathrm{C}=\mathrm{C}$ double bond	+0.09
OH in α-position	+0.49
in β-position	$+0.56$
in γ-position	$+0.76$
NH_{2} in α-position	$+0.98$
in β-position	$+1.04$
in γ-position	+1.14
in ε-position	+1.58
CHO in a-position	+0.07
CO in α-position	-0.07
in γ-position	+0.23
COOH	+1.26
Halogen atom, the first if in α-position any other one	$\begin{aligned} & -0.14 \\ & -0.22 \end{aligned}$
-O-, ether groups	+0.27
SH. in α-position	-0.13
$-\mathrm{SO}_{3} \mathrm{H}-$	+1.59

$E . g$. the R_{M} value for valine is calculated thus: $R_{M}=G_{0}+G_{(C O O H)}+{ }_{4} G_{(\mathrm{C})}+G_{\left(\alpha-\mathrm{NH}_{2}\right)}+$ $G_{\text {(brunching) }} . R_{M}=-0.96+1.26-0.88+0.98+0.14=+0.54$ (sec No .39) .
used. The calculation was done by inserting the experimental R_{M} value and the group constants determined (Table VI) in equation (I). For instance one can determine the basic constant G_{0} from butyric acid and alanine in the following way:

$$
\begin{array}{ll}
R_{M \text { butyric }}=G_{\mathrm{o}}+G_{(\mathrm{COOH})}+3 G_{(\mathrm{C})} & G_{\mathrm{o}}=-0.96 \\
R_{M \text { alanine }}=G_{\mathrm{o}}+G_{(\mathrm{COOH})}+G_{\left(a-\mathrm{NH}_{2}\right)}+2 G_{(\mathrm{C})} & G_{\mathrm{o}}=-0.96
\end{array}
$$

The mean value obtained from 14 different acids by this method was found to be $G_{0}=-0.96$.

ACKNOWLEDGEMENTS

Grateful acknowledgement is made to Dr. Dipl. Ing. H. Bildstein, head of the Institute of Chemistry, Reactor Centre Seibersdorf, for his interest and support in the carrying out of this work. I also wish to thank Doz. Dr. N. Getoff for valuable discussions and for the gift of some amino acids. Mr. K. Wess is also thanked for his technical assistance, and Dr. W. Haff and Mr. Hd. Hofmann for making available some of the acids used.

REFERENCES

[^1]5 H. K. Schauer and R. Bulirsch, Z. Naturforsch., iob (1955) 683.
6 H. K. Schauer and R. Bulirsch, Z. Naturforsch., 13b (1958) 327.
7 H. K. Schauer and R. Bulirsch, Naturwiss., 43 (1956) 34.
8 L. S. Bark and J. T. Graham, Analyst, 85 (1960) 904; 907.
9 M. Brenner and G. Pataki, Helv. Chim. Acla, 44 (rgGi) 1420.
io M. Brenner, A. Niederwieser, G. Pataki and R. Webster, in E. Stahl (Editor), Dünnschichtchromatographie, I.Auflage, Springer, Berlin, Göttingen, Heiclelberg, 1962, p. 105.
if J. Green, S. Marcinitiewicz and D. Mchale, J. Chromatog., io (1963) 35; 42; 158; 354; 366; 372; 389.
12 Z. Prochaska, Chem. Listy, 58 (1964) 9it.
13 G. Pataki, J. Chromatog., 17 (1965) 327.
14 I. E. Bush, Methods Biochem. Anal., 13 (1965) 357.
14 L. S. Bark and R. J. T. Graham, J. Chromatog., 23 (1966) 120, 417 ; 25 (1966) 347, 357; 27 (1967) 109, 116, 131.
16 L. Nover and M. Lucisner, Ayzneimittelstandardisierung, 15 (1968) 37.
17 L. Nover, G. Baumgarten and M. Luckner, J. Chromatog., 32 (1968) 93, 123, 141 ; 39 (r969) 419, 450.
18 E. Soczewińsigy and M. Biegnnowska, J. Chromatog., 40 (1969) 43 I.
19 R. Consden, A. H. Gordon and A. J. P. Martin, Biochem. J., 38 (1944) 224.
20 A. J. P. Martin, Biochem. Soc. Symp. (Cambridge), 3 (1949) 4.
21 A. Polson, Biochim. Biophys. Acta, 3 (1949) 205.
22 A. G. Long, R.J. Quayle and R. J. Stedman, J. Chem. Soc., (r95i) 2197.
23 A. B. Pardee, J. Biol. Chem., 190 (1951) 757.
24 J. M. Bremner and R. H. Kenten, Biochem. J., 49 (195I) 65 I.
25 G. Serchi, Ann. Chim. (Rome), 43 (1953) 253.
26 J. Franc and J. Jokl, J. Chromatog., 2 (1959) 423.
27 J. R. Howe, J. Chromatog., 3 (1960) 389.
28 O. Hromatka and W. A. Aue, Monatsh. Chem., 93 (1962) 497, 503.
29 J. Trzaska and G. N. Kowkabany, J. Chromatog., 26 (1967) 141.
30 T. B. Moore and C. G. Bakker, J. Chromatog., I (1958) 513.
3 I. M. Hais, in I. M. Hais and K. Macer (Editors), Some General Problems of Paper Chromatography, Publ. House of the Czech. Acad. of Sciences, Prague, 1962, p. 25.
32 F. Gútlbauer, to be published.
33 E. Bancher and H. Scherz, Mihrochim. Acta, (1964) 1159.
34 G. Lehmann and P. Martinod, Z. Lebensm. Untersuch. Forsch., 130 (1966) 269.
J. Dittmann, J. Chromatog., 34 (1968) 407.
P. J. Schorn, Z. Anal. Chem., 205 (1964) 303.
A. R. Jones, E. J. Dowling and W. J. Skraba, Anal. Chent., 25 (1953) 394.
R. D. Hartley and G. J. Lawson, J. Chromatog., 7 (1962) 69.
A. Lynes, J. Chromatog., 15 (1964) 108.
D. Braun and D. Vorendohre, Chromatographia, i (1968) 405.
H. Bayzer, J. Chromatog., 27 (1967) 104.
M. Rinis and S. Herrmann, J. Chromatog., 14 (1964) 523. D. Chiari and M. Röhr, Mikrochim. Acta, (1967) 140.
J. Chromatog., 45 (1969) 104-112

[^0]: J. Chromatog., 45 (1969) 104-112

[^1]: i E. C. Bate-Smith and R. G. Westale, Biochim. Biophys. Acta, 4 (1950) 427.
 2 A. Jeanes, C. S. Wise and R. J. Dimler, Anal. Chem., 23 (195I) 415.
 3 D. French and G. M. Wild, J. Am. Chem. Soc., 75 (r953) 2612.
 4 E. R. Reichl, Monatsh. Chem., 86 (1955) 69.

